Refinements of numerical radius inequalities using the Kantorovich ratio
نویسندگان
چکیده
Abstract In this paper, we improve some numerical radius inequalities for Hilbert space operators under suitable condition. We also compare our results with known results. As application of result, obtain an operator inequality.
منابع مشابه
Some improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملsome numerical radius inequalities with positive definite functions
using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. also, some open problems are stated.
متن کاملSharper Inequalities for Numerical Radius for Hilbert Space Operator
We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Concrete Operators
سال: 2022
ISSN: ['2299-3282']
DOI: https://doi.org/10.1515/conop-2022-0128